Rook placements in $G_2$ and $F_4$ and associated coadjoint orbits

نویسندگان

چکیده

Let $\mathfrak{n}$ be a maximal nilpotent subalgebra of simple complex Lie algebra with root system $\Phi$. A subset $D$ the set $\Phi^+$ positive roots is called rook placement if it consists pairwise non-positive scalar products. To each and map $\xi$ from to $\mathbb{C}^{\times}$ nonzero numbers one can naturally assign coadjoint orbit $\Omega_{D,\xi}$ in dual space $\mathfrak{n}^*$. By definition, $f_{D,\xi}$, where $f_{D,\xi}$ sum covectors $e_{\alpha}^*$ multiplied by $\xi(\alpha)$, $\alpha\in D$. (In fact, almost all orbits studied at moment have such form for certain $\xi$.) It follows results Andr\`e that $\xi_1$ $\xi_2$ are distinct maps then $\Omega_{D,\xi_1}$ $\Omega_{D,\xi_2}$ do not coincide classical systems We prove this true $\Phi$ type $G_2$, or $F_4$ orthogonal.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

m-Level rook placements

Goldman, Joichi, and White proved a beautiful theorem showing that the falling factorial generating function for the rook numbers of a Ferrers board factors over the integers. Briggs and Remmel studied an analogue of rook placements where rows are replaced by sets of m rows called levels. They proved a version of the factorization theorem in that setting, but only for certain Ferrers boards. We...

متن کامل

Patterns in matchings and rook placements

Extending the notion of pattern avoidance in permutations, we study matchings and set partitions whose arc diagram representation avoids a given configuration of three arcs. These configurations, which generalize 3-crossings and 3-nestings, have an interpretation, in the case of matchings, in terms of patterns in full rook placements on Ferrers boards. We enumerate 312-avoiding matchings and pa...

متن کامل

Quantization of Nilpotent Coadjoint Orbits Quantization of Nilpotent Coadjoint Orbits Quantization of Nilpotent Coadjoint Orbits

Let G be a complex reductive group. We study the problem of associating Dixmier algebras to nilpotent (co)adjoint orbits of G, or, more generally, to orbit data for G. If g = 0 + n + in is a triangular decomposition of g and 0 is a nilpotent orbit, we consider the irreducible components of 0 n n, which are Lagrangian subvarieties of 0. The main idea is to construct, starting with certain "good"...

متن کامل

Coadjoint Orbits, Spin and Dequantization

In this Letter we propose two path integral approaches to describe the classical mechanics of spinning particles. We show how these formulations can be derived from the associated quantum ones via a sort of geometrical dequantization procedure proposed in a previous paper.

متن کامل

Pattern Avoiding Permutations & Rook Placements

First, we look at the distribution of permutation statistics in the context of pattern-avoiding permutations. The first part of this chapter deals with a recursively defined bijection of Robertson [6] between 123and 132-avoiding permutations. We introduce the general notion of permutation templates and pivots in order to give a non-recursive pictorial reformulation of Robertson’s bijection. Thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Mathematics

سال: 2023

ISSN: ['2336-1298', '1804-1388']

DOI: https://doi.org/10.46298/cm.9041